Rhamnolipid stimulates uptake of hydrophobic compounds by Pseudomonas aeruginosa.
نویسندگان
چکیده
The biodegradation of hexadecane by five biosurfactant-producing bacterial strains (Pseudomonas aeruginosa UG2, Acinetobacter calcoaceticus RAG1, Rhodococcus erythropolis DSM 43066, R. erythropolis ATCC 19558, and strain BCG112) was determined in the presence and absence of exogenously added biosurfactants. The degradation of hexadecane by P. aeruginosa was stimulated only by the rhamnolipid biosurfactant produced by the same organism. This rhamnolipid did not stimulate the biodegradation of hexadecane by the four other strains to the same extent, nor was degradation of hexadecane by these strains stimulated by addition of their own biosurfactants. This suggests that P. aeruginosa has a mode of hexadecane uptake different from those of the other organisms. Rhamnolipid also enhanced the rate of epoxidation of the aliphatic hydrocarbon alpha,omega-tetradecadiene by a cell suspension of P. aeruginosa. Furthermore, the uptake of the hydrophobic probe 1-naphthylphenylamine by cells of P. aeruginosa was enhanced by rhamnolipid, as indicated by stopped-flow fluorescence experiments. Rhamnolipid did not stimulate the uptake rate of this probe in de-energized cells. These results indicate that an energy-dependent system is present in P. aeruginosa strain UG2 that mediates fast uptake of hydrophobic compounds in the presence of rhamnolipid.
منابع مشابه
Rhamnolipid-induced removal of lipopolysaccharide from Pseudomonas aeruginosa: effect on cell surface properties and interaction with hydrophobic substrates.
Little is known about the interaction of biosurfactants with bacterial cells. Recent work in the area of biodegradation suggests that there are two mechanisms by which biosurfactants enhance the biodegradation of slightly soluble organic compounds. First, biosurfactants can solubilize hydrophobic compounds within micelle structures, effectively increasing the apparent aqueous solubility of the ...
متن کاملThe enhancement by surfactants of hexadecane degradation by Pseudomonas aeruginosa varies with substrate availability.
The rhamnolipid biosurfactant produced by Pseudomonas aeruginosa influences various processes related to hydrocarbon degradation. However, degradation can only be enhanced by the surfactant when it stimulates a process that is rate limiting under the applied conditions. Therefore we determined how rhamnolipid influences hexadecane degradation by P. aeruginosa UG2 under conditions differing in h...
متن کاملComparison between batch and fed-batch production of rhamnolipid by Pseudomonas aeruginosa
This paper presents a comparison between batch and three different sets of fed batch fermentations forrhamnolipid production by Pseudomonas aeruginosa. The batch run was performed with 500 ml of culturemedium having the initial glycerol and sodium nitrate concentrations of 30 and 8.3 g/l, respectively. For a fedbatch run with nitrogen source in feed, 250 ml of the nitrogen exc...
متن کاملEffects of Cream Containing Rhamnolipid Microbial Surfactants from Pseudomonas aeruginosa MR01 on Growth Inhibition of Staphylococcus aureus
Background and purpose: Dramatic increase in antibiotic-resistant bacteria highlights the need for new compounds with more effective antibacterial properties and biotechnology could be useful in producing these metabolites. The present study aimed at investigating the effects of rhamnolipid microbial surfactants in a cream-based formulation on growth inhibition of Staphylococcus aureus using in...
متن کاملThe enhancement by surfactants of hexadecane degradation by Pseudomonas
The rhamnolipid biosurfactant produced by Pseudomonas aeruginosa influences various processes related to hydrocarbon degradation. However, degradation can only be enhanced by the surfactant when it stimulates a process that is rate limiting under the applied conditions. Therefore we determined how rhamnolipid influences hexadecane degradation by P. aeruginosa UG2 under conditions differing in h...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 68 9 شماره
صفحات -
تاریخ انتشار 2002